Konza LTER Publications
Soil N and plant responses to fire, topography and supplemental N in tallgrass prairie. Ecology. 1997;78:1832 -1843. doi:10.1890/0012-9658(1997)078[1832:SNAPRT]2.0.CO;2.
. Soil net nitrogen mineralisation across global grasslands. Nature Communications. 2019;10(4981). doi:10.1038/s41467-019-12948-2.
Soil, nitrogen, phosphorus, and organic matter processing by earthworms in tallgrass prairie. Ecology. 1991;72:2101 -2109. doi:10.2307/1941562.
. Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems. Oecologia. 2016;180(2):485 -497. doi:https://doi.org/10.1007/s00442-015-3471-7.
. Soil organic carbon, aggregation, and microbial community Structure in annual and perennial biofuel crops. Agronomy Journal. 2019;111(13):128 - 142. doi:10.2134/agronj2018.04.0284.
. Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecology. 2003;84:724 -735. doi:10.1890/0012-9658(2003)084[0724:SRRPAD]2.0.CO;2.
. Soil structure as influenced by simulated tillage. Journal of Soil Science. 1984;48:879 -884.
. Soil structure is an important omission in Earth System Models. Nature Communications. 2020;11(522). doi:10.1038/s41467-020-14411-z.
Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology & Biochemistry. 2011;42:2182 -2191. doi:10.1016/j.soilbio.2010.08.014.
. Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos. 2007;116:1017 -1029. doi:10.1111/j.0030-1299.2007.15630.x.
. . Sources of Sr and implications for weathering of limestone under tallgrass prairie, northeastern Kansas. Applied Geochemistry. 2005;20:2325 -2342. doi:10.1016/j.apgeochem.2005.08.002.
. Space use of female greater Prairie-Chickens in response to fire and grazing interactions. Rangeland Ecology & Management. 2017;70(2):165–174. doi:10.1016/j.rama.2016.08.004.
. Spatial and physical characteristics of bison wallows in the Flint Hills of Kansas. Ecosphere. 2024;15(5):e4861. doi:10.1002/ecs2.v15.510.1002/ecs2.4861.
. Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Molecular Ecology. 2016;25(18):4674 - 4688. doi:10.1111/mec.13784.
. Spatial and temporal patterns of nitrogen concentrations in pristine and agriculturally- influenced prairie streams. Biogeochemistry. 2001;53:125 -141. doi:10.1023/A:1010707632340.
. Spatial and temporal patterns of vegetation in the Flint Hills. Transactions Kansas Academy of Science. 1997;100:10 -20. doi:10.2307/3628435.
. Spatial connectedness of plant species: potential links for apparent competition via plant diseases. Plant Pathology. 2013;62:1195 -1428. doi:10.1111/ppa.12045.
. Spatial ecology of eastern yellow-bellied Racer (Coluber constrictor flaviventris) and Great Plains rat snake (Pantherophis emoryi) in a contiguous tallgrass-prairie landscape. Herpetologica. 2011;67:428 -439. doi:10.1655/HERPETOLOGICA-D-10-00076.1.
. Spatial heterogeneity in habitat selection: nest site selection by Greater Prairie-Chickens. Journal of Wildlife Management. 2013;77:791 -801. doi:10.1002/jwmg.493.
. Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. . Ecology Letters. 2018;21(9):1364 -1371. doi:10.1111/ele.13102.
Spatial heterogeneity in the herbaceous layer of a semi-arid savanna ecosystem. Plant Ecology. 2003;167:319 -332. doi:10.1023/A:1023927512590.
. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environmental Science & Technology. 2009;43:4273 -4279. doi:10.1021/es9001407.
. Spatial model error analysis using autocorrelation indices. Ecological Modelling. 1995;82:75 -91. doi:10.1016/0304-3800(94)00074-R.
. Spatial variability of nitrogen mineralization at the field scale. Soil Science Society of America Journal. 1997;61:1214 -1221. doi:10.2136/sssaj1997.03615995006100040029x.
. Spatial variation in predation attempts on artificial snakes in a fire-disturbed tallgrass prairie. Southwestern Naturalist. 2007;52:263 -270. doi:10.1894/0038-4909(2007)52[263:SVIPAO]2.0.CO;2.
. Spatial variation in soil microbial processes as a result of woody encroachment depends on shrub size in tallgrass prairie. Plant and Soil. 2021;460:359 - 373. doi:10.1007/s11104-020-04813-9.
. Spatio-temporal differences in leaf physiology are associated with fire, not drought, in a clonally integrated shrub. . AoB PLANTS. 2021;13(4):plab037. doi:10.1093/aobpla/plab037.
. Spatiotemporal scales of non-equilibrium community dynamics: a methodological challenge. New Zealand Journal of Ecology. 1997;21:199 -206. Available at: http://www.jstor.org/stable/24054516.
. Species abundance distributions and richness estimations in fungal metagenomics – lessons learned from community ecology. Molecular Ecology. 2011;20:275 -285. doi:10.1111/j.1365-294X.2010.04948.x.
Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Applied and Environmental Microbiology. 2004;70:2254 -2262. doi:10.1128/AEM.70.4.2254-2262.2004.
. Species loss due to nutrient addition increases with spatial scale in global grasslands. . Ecology Letters. 2021;24(10):2100 - 2112. doi:10.1111/ele.v24.1010.1111/ele.13838.
Species reordering, not changes in richness, drives long-term dynamics in grassland communities. . Ecology Letters. 2017;20(12):1565. doi:10.1111/ele.12864.
. Species responses to nitrogen fertilization in herbaceous plant communities, and associated species traits. Ecology. 2008;89:1175 -. doi:10.1890/07-1104.1.
Species richness- productivity relationship for small mammals along a desert-grassland continuum: differential responses of functional groups. Journal of Mammalogy. 2006;87:777 -783. doi:10.1644/05-MAMM-A-253R2.1.
. Species, season, and density of buried seeds surviving fox squirrel depredation. Prairie Naturalist. 2001;33:197 -208.
. Spider communities in the canopies of annually burned and long-term unburned Spartina pectinata wetlands. Environmental Entomology. 1995;24:832 -834. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=3652398.
. Sporulation of two vesicular-abuscular mycorrhizal fungi in nonsterile soil. Mycologia. 1987;79:896 -899. doi:10.2307/3807692.
. SPOT satellite data for pattern recognition on the North American tall-grass prairie Long-term Ecological Research Site. Geocarto International. 1988;3:37 -40. doi:10.1080/10106048809354174.
. Stability of grassland soil C and N pools despite 25 years of an extreme climatic and disturbance regime. Journal of Geophysical Research: Biogeosciences. 2016;121(7):1934 - 1945. doi:10.1002/2016JG003370.
. Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Functional Ecology. 2012;26(6):1450 - 1459. doi:10.1111/j.1365-2435.2012.01995.x.
Stable isotope diagrams of freshwater food webs. Ecology. 1991;72:2293 -2297. doi:10.2307/1941580.
. Stable isotopes identify the natal origins of a generalist brood parasite, the brown‐headed cowbird Molothrus ater. Journal of AvianBiology. 2008;39:364 -367. doi:10.1111/j.0908-8857.2008.04170.x.
. State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere. 2021;12(5). doi:10.1002/ecs2.v12.510.1002/ecs2.3433.
Status signaling is absent within age-and-sex classes of Harris' Sparrows. The Auk. 1988;105:424 -427. doi:http://www.jstor.org/stable/4087436.
. Stochastic analysis of the dynamics of nitrogen concentration in a stream ecosystem. Ecological Modeling. 1991;56:33 -45. doi:10.1016/0304-3800(91)90191-3.
. Stoichiometric homeostasis predicts plant species dominance, temporal stability and responses to global change. Ecology. 2015;96(9):2335. doi:10.1890/14-1897.1.
. Stomatal and photosynthetic responses to variable light in sorghum, soybeans and eastern gammagrass. Physiologia Plantarum. 1995;94:613 -620. doi:10.1111/j.1399-3054.1995.tb00975.x.
. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant, Cell and Environment. 2014;37:132 -139. doi:10.1111/pce.12137.
. Stomatal responses to variable sunlight in Bur Oak (Quercus macrocarpa Michx.) leaves with different photosynthetic capacities. International Journal of Plant Science. 1994;155:583 -587. Available at: http://www.jstor.org/stable/2475031.
.