DOI:
Data set ID:
Estimated evapotranspiration from a hypothetical short grass with a height of 0.12 m, a surface resistance of 70 s m-1, and an albedo of 0.23 (no water stress). Dataset contains daily total estimated evapotranspiration.
Estimated evapotranspiration from a hypothetical short grass with a height of 0.12 m, a surface resistance of 70 s m-1, and an albedo of 0.23 (no water stress). Dataset contains daily total estimated evapotranspiration.
In 1988 and 1990, 31 wells were installed at 20 sites within watershed N04D at Konza Prairie Biological Station to allow long-term monitoring of groundwater physical and chemical properties. Subsequently, four additional wells were installed in N04D in 1997, and five wells were installed in an adjacent watershed, N01B, in 2020. Most of the wells are nested to include wells completed in alluvium/colluvium and two Permian limestone units, the Morrill Limestone and the Eiss Limestone. The wells are completed along transects perpendicular to the main drainage in each watershed.
Wells were drilled in two sites on Konza Prairie Biological Station in April, 1993 approximately 100 m from Kings Creek. The two sites are located in a grassland and an agricultural area. The grassland site (K01A) is an old field that was planted with brome sometime prior to 1976. It has not been grazed for 25 years and is burned in spring every 1-2 years. The agricultural site is currently under a mix of cultivation and restoration plots. Historically, it was cultivated from sometime between 1939 and 1950 to the present.
Data set contains results of chemical analysis of wetfall samples collected on Konza Prairie. Analysis is done by the Central Analytical Lab (CAL), Champaign, IL as part of the National Atmospheric Deposition Program (NADP). NADP data products available on the NADP/NTN web site (nadp.slh.wisc.edu/data/NTN/ (link is external)) include: Annual Data Summaries, Semiannual Data Reports, Annual and Seasonal Averages, Monthly Averages, and Weekly data. Konza Prairie LTER archives and provides the weekly data in electronic form before May 2019.
Data set contains daily records of precipitation on 10 raingauges at 10 sites on Konza Prairie. Two sites (020A and 002C; SE) have 7-day clocks (one revolution per week), 7 have 24-hour clocks (one revolution per day), and the Headquarters raingauge generates daily data and 15 minute data. The Headquarters raingauge generates data year round. The remaining rain gauges are operated from April 1 to October 31. Precipitation amounts are recorded in mm.
Data set contains the monthly values of maximum, minimum and average temperatures and monthly total precipitation for Manhattan, KS since 1891. Data are in three separate files, one for each measurement. Data comes from the Weather Data Library (https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND (link is external)) in the computer system office of the Cooperative Extension Service of Kansas State University, Manhattan Kansas. 211 Umberger Hall, (785) 532-6270.
The following weather data are included in this data set: hourly (record type 1): mean temperature, mean relative humidity, mean wind speed, mean wind direction, mean solar radiation, soil temperature, max wind speed; daily (record type 2): maximum air temperature, minimum air temperature, mean air temperature, mean relative humidity, total solar radiation, total precipitation, maximum soil temperature, minimum soil temperature, mean soil temperature, average wind speed. These data are collectecd by a micrologger at headquarters on Konza Prairie.
Water temperature is measured in streams draining catchments with annual, 2-year, 4-year, and 20-year burn treatments. Hourly measurements of water temperature (degrees C) are made in each of the four streams where discharge is continuously monitored (see data set ASD02).
The 1060 hectacre Kings Creek watershed (STATION NUMBER 06879650) is a U.S. Geological survey hydrologic benchmark. (cf. Cobb, e.D. and J.E. Beisecker. 1971. USGS circular 460-d) flow is measured continuously with a bubble gage. The period of record started in March, 1979. The hydrologic regime is driven by the mid-continent climate characterized by summer thunderstorms and drought. The stream, at the gaging station, is fourth order in gallery forest. The riparian vegetation in the headwaters (1st & 2nd order) is tallgrass, or true, prairie.
Stream discharge is measured on a catchment (N04D), with 4-year fire return interval and grazed by bison since 1992. Measurements are taken at 5 minute intervals at a triangular throated flume. The prairie streams are 3rd-order and are intermittent. Daily and stormflow discharge records are available.
Stream discharge is measured on a catchment (N20B), with 20-year fire return interval and grazed by bison since 1992. Measurements are taken at 5 minute intervals at a triangular throated flume. The prairie streams are 3rd-order and are intermittent. Daily and stormflow discharge records are available.
Stream discharge is measured on a catchment (N01B), with 1-year fire return interval and grazed by bison since 1992. Measurements are taken at 5 minute intervals at a triangular throated flume. The prairie streams are 3rd-order and are intermittent. Daily and stormflow discharge records are available.
Stream discharge is measured on a catchment (N02B), with 2-year fire return interval and grazed by bison since 1992. Measurements are taken at 5 minute intervals at a triangular throated flume. The prairie streams are 3rd-order and are intermittent. Daily and stormflow discharge records are available.
Data set contains measurements of soil moisture (%volume) at various depths (25-200 cm) in deep (lowland) soils collected on LTER grazed and ungrazed watersheds burned at 1-, 4-, and 20-year intervals. Soil moisture measured by the neutron probe method.
Rainfall simulation and overland flow experiments were performed on four plots at a single site on Konza from May to August, 1989. Two plots were treated with a late spring burn and two plots were left unburned. Five simulations were performed on burned plots and three simulatons on unburned plots. Each simulation consisted of a “dry run” followed 24 hours later by a 'wet run'. The dry run consisted of rainfall applied at an intesity of approximately 60 mm/hour.
To determine effects of rotational burning and riparian vegetation removal on suspended solid concentrations in streams. Two sites are burned with a frequency of 2 (N02B) and 4 (N04D) years and grazed by bison. In 2011, N02B will have woody riparian vegetation removed along the entire stream length. The Shane Creek site (SHAN) is currently ungrazed and burned most years. In 2011 the treatment will be switched to grazing and burning of 1/3 of the watershed every year. The data include before and during-treatment sampling for both experiments.
Soil temperature was measured using temperature probes and dataloggers at selected depths in small plots tht were either burned annually, burned and clipped to remove aboveground biomass, or left unburned. Raw data was summarized into hourly readings and daily minimum, maximum, and mean temperatures.
Turbidity, dissolved oxygen, conductivity, temperature, and pH are measured on streams draining catchments with 2-year (N02B), 4-year (N04D), and rotational (SA, SB, and SC) burns. Measurements are taken at 10 minute intervals upstream of the flume or crossing. Water quality parameters are measured using Yellow Springs Instruments (YSI) multiparameter water quality sondes model 6600 or 6920. Turbidity and dissolved oxygen are measured using YSI 6136 optical turbidity probe and YSI 6150 ROX optical dissolved oxygen probe.
The objectives of this project are to quantify the seasonably variable timing among meteoric precipitation, groundwater recharge, and groundwater temperature. Hypotheses are: 1. Because of the karst-like characteristics of the aquifers in N04d (and by extension, the entire region), recharge will be rapid during moderately large precipitation events where fractures are enlarged by dissolution and therefore highly conductive, except during the most active part of the growing season. 2.
Dataset contains 30min averages of many variables used to record changes in microclimatic conditions. Microclimate sensor stations were arrayed in discrete topographic positions (upland, slope, lowland) in 4 watersheds: 1D, 1B, 4B, 4F. No microclimate sensor stations were present in upland-1D or lowland-4B because eddy flux towers are present in these locations. Similar microclimate data is available from these flux towers during the time period of this study.